The automorphism group of Generalized Reed-Muller codes
نویسندگان
چکیده
منابع مشابه
The automorphism group of Generalized Reed-Muller codes
Berger, T. and P. Charpin, The automorphism group of Generalized Reed-Muller codes, Discrete Mathematics 117 (1993) l-17. We prove that the automorphism group of Generalized Reed-Muller codes is the general linear nonhomogeneous group. The Generalized Reed-Muller codes are introduced by Kasami, Lin and Peterson. An extensive study was made by Delsarte, Goethals and Mac-Williams; our result foll...
متن کاملGeneralized Reed-Muller Codes
the possible choices for n and k are rather thinly distributed in the class of all pairs (n, k) with k ~ n--and it is, therefore, often inefficient to make use of such codes in concrete situations (that is, when a desired pair (n, k) is far from any achievable pair). We have succeeded in overcoming this difficulty by generalizing the Reed-Muller codes in such a way that they exist for every pai...
متن کاملThe Generalized Reed-Muller codes in a modular group algebra
First we study some properties of the modular group algebra Fpr [G] where G is the additive group of a Galois ring of characteristic pr and Fpr is the field of p r elements. Secondly a description of the Generalized Reed-Muller codes over Fpr in Fpr [G] is presented.
متن کاملAutomorphism groups of generalized Reed-Solomon codes
We look at AG codes associated to P, re-examining the problem of determining their automorphism groups (originally investigated by Dür in 1987 using combinatorial techniques) using recent methods from algebraic geometry. We classify those finite groups that can arise as the automorphism group of an AG code and give an explicit description of how these groups appear. We give examples of generali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1993
ISSN: 0012-365X
DOI: 10.1016/0012-365x(93)90321-j